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Abstract 
As genetic testing expands out of the research laboratory into medical practice as well as the 
direct-to-consumer market, the efficiency with which the resulting genotype data can be 
compared between individuals is of increasing importance. 

We present a method for summarizing personal genotypes, yielding 'genotype 
fingerprints' that can be derived from any single nucleotide polymorphism (SNP)-based assay 
and readily compared to estimate relatedness. The resulting fingerprints remain comparable as 
chip designs evolve to higher marker densities. We demonstrate that they support applications 
including distinguishing genotypes of closely related individuals by relationship type, 
distinguishing closely related individuals from individuals from the same background population, 
identification of individuals in known background populations, and de novo identification of 
subpopulations within a large cohort in a high-throughput manner. 

An important feature of genotype fingerprints is that, while fingerprints do not preserve 
anonymity, they summarize individual marker data in a way that prevents phenotype prediction. 
Genotype fingerprints are therefore well-suited to public sharing for ancestry determination 
purposes, without revealing personal health risk status. 
 
Background 
We have recently published a method for converting personal genomes into ‘genome 
fingerprints’ that facilitate (and greatly accelerate) their comparison (Glusman et al, 2017). Our 
method encodes the characteristics of pairs of consecutive single nucleotide variants (SNVs) 
relative to a reference, as represented in variant call format (VCF) files or structurally equivalent 
formats. Typically, VCF files encode only differences from the reference; genomic locations in 
which the individual is homozygous for the reference allele are typically not stated, achieving a 
more compact representation. 

A different representation of genetic information enumerates all observed genotypes for 
a predefined set of variants of interest, typically common single-nucleotide polymorphisms 
(SNPs). In this format, each SNP is identified by its identifier (‘rsid’, reference SNP identifier) in 
the dbSNP database (Sherry et al., 2001). For each rsid, the observed genotype of the 
individual is stated, including those for which the individual is homozygous for the reference 
allele. The chromosome and coordinate of the SNP may be stated as well, relative to a version 
of the reference that is hopefully stated in the ‘header’ of the genotype file. 

This representation is suitable for reporting the results of genotyping experiments using 
DNA hybridization microarrays. Due to the lower cost of DNA hybridization genotyping relative 
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to whole-genome sequencing (WGS), exome sequencing and other forms of targeted 
sequencing, very large numbers of genotypes have been produced to date, using a variety of 
array designs [a]. Array-based genotyping is also used as a quality-control step prior to WGS. In 
fact, the commoditization of array-based genotyping has enabled commercial companies 
(including 23andMe, AncestryDNA, Family Tree DNA, and others [b]) to offer this service 
directly to consumers (DTC). These services typically yield results with high concordance (Imai 
et al., 2011) and low no-call rates (Glusman et al., 2012). Nevertheless, genotyping the same 
individual using different array designs can yield slightly different results, as each technology 
has its own biases. Even when using the same technology, reference and encoding, genotyping 
the same individual repeatedly can give slightly different results due to the stochastic nature of 
genome sequencing, batch effects, or differences in the computational pipelines used. Some 
companies regularly reanalyze the raw data for all customers, refining the results over time; as a 
result, customers who download their genotype data repeatedly over the years may have 
slightly differing results even from the same sample. 

Many methods exist for comparing genome-wide genotypes for inferring relatedness, 
with varying degrees of accuracy (Ramstetter et al., 2017). Most methods are very 
computationally demanding and require full access to the genotype data of the individuals to be 
compared, potentially precluding their application to the study of samples with restricted access, 
or by non-specialists interested in exploring their ancestry and genealogy. 

We present here a method for summarizing personal genotypes, yielding 'genotype 
fingerprints' that can be readily compared to estimate relatedness. The genotype fingerprints 
can be computed starting from any of several chip array designs, with genome coordinates 
expressed relative to any reference version; the resulting fingerprints are directly comparable 
without further conversion. Computation on the genotype fingerprints is fast and requires little 
memory, enabling comparison of large sets of genomes. No individual variants or other detailed 
features of the personal genome can be reconstructed from the fingerprint, thereby allowing 
private information to be more closely guarded and protected and decoupling genome 
comparison from genome interpretation. Fingerprints of different sizes allow balancing the 
speed and accuracy of the comparisons. Due to the high value of estimating relatedness, the 
potential applications of genotype fingerprinting range from basic science (study design, 
population studies) to personalized medicine, forensics, and data privacy. 
 
Methods 
Overview 
Our algorithm summarizes an individual’s genotype as a ‘raw’ fingerprint, which is a tally of 
biallelic SNPs stratified by observed alleles and by variant identifiers, and taking allele 
frequencies into consideration (Figure 1). We then normalize the raw fingerprint to account for 
systematic differences in frequency between groups. The resulting ‘normalized’ fingerprint 
preserves differences at the species level, e.g. between individuals from different populations. 
Averaging the normalized fingerprints of the individuals in a population yields a ‘population’ 
fingerprint, which can be subtracted from an individual’s normalized fingerprint to produce a 
‘population-adjusted’ fingerprint suitable for more sensitive detection of related genomes. 
 
Raw fingerprints 
The first stage in computing genotype fingerprints yields a ‘raw’ fingerprint, a 4 x L table of SNP 
allele counts (L is the main parameter of the method; defaulting to 1000). The four rows 
correspond to the permitted alleles A, C, G and T; variants with other possible alleles (e.g., 
insertions and deletions, multi-nucleotide variants) are ignored. We note for each SNP the 
alleles observed (both reference and alternate). We also consider the numerical component of 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/208025doi: bioRxiv preprint first posted online Oct. 27, 2017; 

http://dx.doi.org/10.1101/208025


Genotype Fingerprints 

3 

the variant identifier (the rsid) in the dbSNP database (Sherry et al., 2001): this information 
determines the column in the table. 
 
To compute a raw fingerprint: 

1) Identify biallelic SNPs in autosomes as variants with alleles of length 1 in the case-
insensitive alphabet [A C G T]. Ignore all other types of variants. Optionally, include 
only SNPs in a preselected set, e.g., 23andMe V2 and V3. 

2) For each SNP, identify the numerical part of the variant identifier, e.g., 1,801,133 for 
rs1801133. Reduce this value modulo L, e.g., 133 for rs1801133 with L=1000. This 
determines the column in which the SNP will be counted. 

3) For each SNP, count observations of each nucleotide on the strand represented in the 
reference sequence: nA is the count of A alleles (0, 1, or 2), nC is the count of C alleles, 
etc., with nN = nA+nC+nG+nT = 2. 

4) In the indicated column (see 2 above), add nA-eA to the row for A, nC-eC to the row for 
C, etc., where eX = nN fX is the expected number of X alleles and fX is the expected 
frequency of allele X for the SNP. (Depending on the context, these frequencies may 
be obtained for individual SNPs, e.g. from dbSNP for human data; alternatively, they 
may be computed per column from all SNPs contributing to the column in an observed 
cohort of genotypes regardless of the nature of the cohort).  

 
Retrieving the allele frequencies for each observed rsid requires prior knowledge and can incur 
in significant computational costs. It is possible to compute efficiently a data-driven 
approximation of the raw fingerprints as follows: 

1) Compute allele counts as above, except in step 4 increment the value in the [4 x L] 
matrix by one for each observed allele. (In case of homozygosity, increment by two.) 

2) Compute a cohort average reference by averaging the allele counts observed in a 
collection of genomes genotyped using the same array design. 

3) Compute the raw fingerprint for an individual by subtracting the cohort average 
reference from their allele count. 

 
Fingerprint normalization 
The second stage in computing genome fingerprints performs a normalization of the raw 
fingerprint to account for the different frequencies of observed alleles and numerical values of 
rsids. The normalization is performed in two steps: 

1) Normalization by rsid value: subtract the mean and divide by the standard deviation of 
each column. 

2) Normalization by allele: subtract the mean and divide by the standard deviation of 
each row. 

 
Adjusting fingerprints for population 
We compute a population fingerprint as the average of the normalized fingerprints from the 
individuals in the population. These fingerprints must have been computed using the same 
parameter L. We then compute a population-adjusted fingerprint for an individual by subtracting 
a population fingerprint from the normalized fingerprint of that individual; both individual and 
population fingerprints must have been computed using the same parameter L. 
 
Fingerprint comparison 
To compare two fingerprints, concatenate the rows of each fingerprint matrix into a vector and 
compute the Spearman correlation between the two vectors. This same procedure is 
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appropriate for comparing two normalized fingerprints or two population adjusted fingerprints, 
whether adjusted to the same or different populations. 
 
Family analysis 
We obtained 23andMe SNP chip genotype data for a family of five [c], including Mother, Father, 
Son, Daughter and Aunt. Son is 23andMe V2 data and the rest of the family are 23andMe V3 
data. We computed normalized genotype fingerprints (L=5000) for the five individuals and 
performed all pairwise comparisons. We also extracted from these samples the lists of rsids 
observed in V2 and V3, for use in further analyses below. 
 
Population structure analysis 
We studied the multi-sample VCFs in release 20130502 (filenames: 
ALL.chrNN.phase3_shapeit2_mvncall_integrated_v5.20130502.genotypes.vcf.gz) of the 1000 
Genomes Project data set and extracted the observed genotypes, at each of the rsids in the 
23andMe V2 and V3 lists, for each of the 2504 genomes in this cohort. We then computed 
genotype fingerprints from these deduced genotypes using L=500, 1000, and 5000. 

We compared principal components analysis (PCA) of genome fingerprints and 
genotype fingerprints on this data set as follows. We identified SNPs with a minor allele 
frequency of 5% or more, removed SNPs in complete linkage disequilibrium with a SNP to the 
left (i.e. a smaller chromosomal position), retained 5% at random (298,454 SNPs) and counted 
occurrences of the minor allele (0, 1, or 2) in each genome to form a 2504 x 298,454 genotype 
matrix M. We performed PCA using the R function call prcomp(M,center=TRUE,scale=TRUE). 
 
Evaluation of fingerprints for population assignment 
We computed a population fingerprint for each of the annotated populations studied by the 1000 
Genomes Project. To identify the population closest to each individual, we compared each 
individual’s normalized fingerprint to the population fingerprints (using Spearman correlation, as 
described for comparing individual fingerprints). Each individual was considered classified as 
belonging to the closest population. To avoid distortions, we excluded each individual from the 
computation of their own population fingerprint. 
 
Results 
A method for encoding genotyping data 
We developed an algorithm for computing ‘fingerprints’ from genotype data, including data 
produced by DTC genetics companies, e.g., 23andMe. Like our previously published genome 
fingerprinting method (Glusman et al., 2017), the new algorithm is based on locality-sensitive 
hashing (Indyk and Motwani, 1998). The genotype fingerprints are generated efficiently, only 
need to be computed once per individual, and can be efficiently compared to determine whether 
two genotypes represent the same individual, closely related individuals, or unrelated 
individuals. As with genome fingerprints, the original data cannot be reconstructed from the 
genotype fingerprint, enabling sharing of fingerprints for comparison when privacy concerns 
prevent sharing the genotype file itself. 

Importantly, the genotype fingerprints can be computed starting from any of several chip 
array designs, with genome coordinates expressed relative to any reference version, and the 
resulting fingerprints are directly comparable without further conversion. We give examples 
using SNP lists derived from two array designs used by 23andMe: V2, based on Illumina 
HumanHap550 Genotyping BeadChip (~550,000 SNPs) and V3, based on Illumina 
OmniExpress Genotyping BeadChip (~960,000 SNPs). 

The main parameter of our algorithm, L, determines the size of the fingerprint. Smaller 
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fingerprints (e.g., L=100) are useful for fast genome comparisons to determine identity, while 
larger fingerprints (e.g., L=1000, 5000) retain more information and better support detailed 
analyses like population reconstruction. 

 
Computation on genotype fingerprints is fast 
Computation of raw genotype fingerprints is very efficient, typically requiring 10-15 seconds per 
genome, depending on the number of genotypes included in the hybridization array design. The 
computation requires a single-pass read of the genotype file and depends principally on the time 
it takes to read the file (I/O bound). It is also trivially parallelizable: computation of one genotype 
fingerprint does not depend on the results of similar computations for other individuals. 
Computing population fingerprints for the 26 populations of the 1000 Genomes cohort took 
under a minute; fingerprint normalization averaged 0.13 seconds per genome; serializing the 
1000 Genomes dataset into a searchable fingerprint database then took 37 seconds. Finally, all-
against-all comparisons in this data set (3,133,756 comparisons) took 15 CPU seconds for 
L=1000 (4.8 microseconds per comparison) and 79 CPU seconds for L=5000 (25.2 
microseconds per comparison). As for genome fingerprints, comparisons of genotype 
fingerprints are independent and trivially parallelizable. 
 
Fast relationship detection 
We computed pairwise correlations of normalized genotype fingerprints within a family of five 
who made their 23andMe genotype results publicly available (Glusman et al., 2012). The 
resulting correlation levels are consistent with the known family relationships (Figure 2). The 
genotype fingerprint correlations among full siblings (Aunt and Mother, Daughter and Son) and 
parent-offspring pairs are higher than observed in avuncular relationships (Aunt and Daughter, 
Aunt and Son); unrelated pairs (Aunt and Father, Mother and Father) showed the lowest 
correlations. The correlations between the Son and the other family members were somewhat 
reduced due to comparison across different SNP lists (V2 for Son, V3 for all others). 
 
Fast analysis of population structure 
We tested the utility of genotype fingerprints for population studies. We deduced genotypes for 
the 2504 individuals of the 1000 Genomes Project cohort using the 23andMe V3 SNP list, 
computed genotype fingerprints for each, and used PCA to reconstruct the known population 
structure (Figure 3) in a fraction of the time required to perform the same task using standard 
methods, and with much smaller memory requirements. The quality of the reconstruction 
depended on fingerprint size: fingerprints with L=5000 yielded excellent population structure 
reconstruction, comparable to the results of population reconstruction using high-resolution 
genome fingerprints (Glusman et al., 2017). Genotype fingerprints with smaller values of L 
progressively yielded lower-resolution results but with very significant gains in speed. As for 
genome fingerprints, the protocol for reconstructing populations is much simplified using 
genotype fingerprints: it is possible to reconstruct population structure by computing fingerprints 
directly from the individual genotypes and combining the fingerprints into a matrix ready for 
analysis with PCA, t-SNE, etc. 
 
Fast population assignment 
We computed “population fingerprints” in the 1000 Genomes data set by averaging genotype 
fingerprints (V3 set, L=5000) of the individuals in each population. To determine each 
individual’s population of origin, we then compute the correlation between the fingerprint of a 
query genome and the fingerprint of each population; the individual fingerprint is simply 
assigned to the population with which it is most strongly correlated. We tested this method by 
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“leave one out” cross-validation. The correct population was identified as the best match for 
2027 of 2504 query genomes (81% of cases). Accepting the 2nd or 3rd best population matches 
increased the success rate to 92.9% and 96.1%, respectively. As expected, classification was 
most difficult for the admixed AMR genomes; excluding these increased the success rate to 
85.7%, 97.8% and 99.2% for 1st, 2nd and 3rd population matches, respectively. 
 
Robustness to SNP list 
We evaluated whether genotype fingerprints can be compared across chip array designs. We 
computed genotype fingerprints for the 2504 individuals in the 1000 Genomes Project data set, 
to match the chip array designs used in 23andMe V2 and V3 (548,911 and 902,448 SNPs, 
respectively), yielding a mixed set of 5008 genotype fingerprints (two fingerprints for each of 
2504 individuals). We studied this joint set using PCA (Figure 4A) and observed that the first 
two principal components reconstruct the known population structure (as in Figure 3); the third 
principal component separates between fingerprints computed on V2 and V3 versions (Figure 
4B). Furthermore, the correlations between the two versions of each individual are always 
higher than those between related individuals (PO, FS), which are in turn higher than those 
between unrelated individuals (Figure 4C). 
 
Fast detection of close relationships 
Population adjusted genotype fingerprints allow analysis of relationships within a population, 
increasing the resolution of close relationship analyses. We adjusted the L=5000 fingerprints for 
the 2504 individuals in the 1000 Genomes data set, matching 23andMe’s V3 design, relative to 
their stated population of origin, performed all pairwise comparisons, compared with kinship 
coefficients computed using KING (Manichaikul et al., 2010) and with previously reported 
relationships (Gazal et al., 2015) computed using RELPAIR (Epstein et al., 2000) (Figure 5). 
The similarity between unrelated individuals derived from the same population (e.g., Figure 3) is 
removed by adjustment to the population average. Thus, population-adjusted fingerprints for 
unrelated individuals show no significant correlation. As with genome fingerprints, this 
comparison of population-adjusted genotype fingerprints allowed the detection of related 
individuals in the 1000 Genomes cohort, consistent with previous reports (Gazal et al., 2015). 
The highly-correlated pairs correspond to a variety of degrees of relationship, from full siblings 
to cousins. For related pairs, fingerprint correlation levels are correlated with KING kinship 
coefficients. Parent/offspring and full sibling relationships, which have the same expected KING 
kinship coefficient (0.25) but different variance from that expected value, produced equivalent 
high fingerprint correlations. 
 
Discussion 
We presented a method for computing ‘fingerprints’ of genome-wide SNP array genotypes as 
reported by DTC genetics companies, focusing on 23andMe as example. Like our previously 
reported fingerprints from whole-genome resequencing data, genotype fingerprints retain 
sufficient information to enable ultrafast comparison of genotypes, without revealing the private, 
detailed genotype data necessary to predict phenotypes. 

We demonstrated the utility of genotype fingerprints for rapid versions of common tasks: 
identifying genotypes from the same individual, from closely related individuals, or from a known 
population, and to cluster individuals into sub-populations de novo. Based on comparison 
between two different array designs (23andMe V2 and V3), genotype fingerprints are robust to 
differences in number of SNPs assayed, both for establishing identity or relatedness between 
two samples and for reconstructing populations. 

Genotype fingerprints are an adaptation of our previously published genome 
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fingerprinting method (Glusman et al., 2017) to the more limited information present in a 
genotype. While genome fingerprints encode consecutive pairs of SNVs using nucleotide 
sequence and separation distance, genotype fingerprints encode individual SNPs using alleles, 
allele frequencies, and rsids. SNPs are SNVs with high population frequency; while additional 
SNVs are discovered as further genomes are sequenced, the vast majority of SNPs have 
already been identified and assigned stable identifiers (rsids). In contrast, many SNVs either 
lack identifiers or have been assigned preliminary identifiers that are subject to change (e.g., by 
merging with a different identifier representing the same variant). Stable identifiers facilitate 
matching variants across genome reference versions, enabling the desired robustness to a 
changing reference genome using the simpler encoding method presented here. 

Insertions and deletions can also be represented in genotype files (e.g., using the 
symbols I and D, respectively) but they are much less common than SNPs and may not be 
present when deriving genotype files from WGS or exome data. We therefore chose to exclude 
them for the sake of simplicity and consistency in analysis, in similarity with the procedure we 
established for computing genome fingerprints from VCF files. We also chose to include only 
autosomal SNPs, as inclusion of variants in the sex chromosomes may lead to distorted 
similarity values. 

There are several privacy considerations in sharing genomic information. Much attention 
has been paid to the risk of re-identification of de-identified samples (Ehrlich et al., 2014), even 
when querying genetic data sets via bandwidth-limiting interfaces like the GA4GH beacons, 
giving rise to strategies such as obscuring rare variants and budgeting queries (Raisaro et al., 
2017). While enabling an important and powerful query - namely, “has this allele been seen 
before?” - these strategies for preventing re-identification preclude multiple other potential 
applications, thus limiting the utility of genome data sharing. Some genome data sharing 
scenarios exist in which anonymity is not an issue, but phenotype prediction is. For example, an 
individual may wish to compare their genotype (obtained via a DTC genetic testing company) to 
the genotypes of other individuals, without revealing to others whether they carry alleles that 
confer risk to develop a specific phenotype, e.g., Alzheimer’s disease - both currently known 
alleles, and ones whose significance may be discovered in the future. Like genome fingerprints, 
genotype fingerprints decouple genotype comparison from genotype interpretation, supporting 
the identification of closely related individuals, without exposing variant information. 

The number of private individuals who already have knowledge of their genotypes, as 
assessed by DTC genetics companies, vastly exceeds the number of individuals with full 
genome data. We expect genotype fingerprints to have immediate applicability for facilitating 
genotype comparisons, empowering citizen science without concomitantly revealing sensitive 
private genetic information. 
 
Internet Resources 
[a] http://haplogroup.org/exploring-microarray-chips/ 
[b] https://isogg.org/wiki/List_of_DNA_testing_companies 
[c] http://dx.doi.org/10.6084/m9.figshare.92682 
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Figures 
Figure 1. Overview of method. SNPs in the input genotype file are encoded into a table (raw) by 
observed alleles and rsid numerical value, taking allele frequencies into account; this can 
optionally be approximated by subtracting allele counts estimated from a simple model of an 
observed cohort (dashed arrows). The raw fingerprint is then normalized and may be adjusted 
to represent deviation from the center of the closest population. Rectangles and ellipses pertain 
to individual genotypes or to multiple genotypes, respectively; darker gray denotes the flow of 
information for one genotype, from the input file to the normalized and adjusted fingerprints. 
 
Figure 2. Comparison within a family of five. A: Aunt (deceased); M: Mother; F: Father; D: 
Daughter; S: Son. Dashed lines represent family relationships; thin lines denote comparison 
between individuals assayed on different versions of the genotyping platform. 
 
Figure 3. Estimates of population structure in the 1000 Genomes Project data set at different 
resolutions. Individuals are color coded according to their population as per the key to the right. 
EAS, SAS, EUR, AMR and AFR: East Asian, South Asian, European, Admixed American, and 
African, respectively. (A) Principal components analysis (PCA) of the 2504 individuals using 
~300,000 SNPs. (B) PCA on genotype fingerprints with L=5000. (C) PCA on genotype 
fingerprints with L=1000. (D) PCA on genotype fingerprints with L=500. 
 
Figure 4. Comparison of genotype fingerprints relative to different SNP lists. We deduced 
normalized genotype fingerprints (L=5000) for the 1000 Genomes Project cohort using the 
23andMe V2 (red) and V3 (blue) SNP lists. (A) First two principal components, showing 
population structure. (B) Third and fourth principal components, showing separation between 
the two SNP lists. (C) Distribution of cross-correlations between the two sets of genotype 
fingerprints (all possible pairs of V2 vs. V3). Comparisons between the two genotype 
fingerprints for the same individual (self) and comparisons between parent/offspring and full-
sibling pairs (PO, FS) formed distinct, high-correlation subsets. 
 
Figure 5. Identification of close relationships in the 1000 Genomes Project. Comparison 
between the correlations of population-adjusted genotype fingerprints (V3 set, L=5000) and the 
kinship coefficient as computed using KING, highlighting close relationships identified using 
RELPAIR. FS: full siblings (red). PO: parent/offspring (blue). HS: half siblings (magenta). AV: 
avuncular (black). CO: cousins (green). All other pairs in gray. One FS pair (HG03873 and 
HG03998, with maximal kinship, in gray) was not identified by RELPAIR. 
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