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Abstract 
We present three novel metrics for quantifying bacterial genome composition skews. 
Skews are asymmetries in nucleotide usage that arise as a result of mutational biases 
and selective constraints, particularly for energy efficiency. The first two metrics (dot 
product and cross product of average skew vectors) evaluate sequence and gene 
annotation of the genome of a single species, while the third metric (regression RMSD) 
discovers patterns only discernable from studying genomes of thousands of species. 
The three metrics can be computed for genomes not yet finished and fully annotated. 
We studied the genomes of 7738 bacterial species, including completed genomes and 
partial drafts, and identified multiple species with unusual skew parameters. A number 
of these outliers (i.e., Borrelia, Ehrlichia, Kinetoplastibacterium, and Phytoplasma) 
display similar skew patterns despite a lack of phylogenetic relation. These disparate 
bacterial species share lifestyle characteristics, suggesting that our novel metrics 
successfully capture effects on genome composition of biosynthetic constraints and of 
interaction with the hosts. 

Introduction 
Bacterial genomes display significant compositional biases, both in terms of G+C 
content and in skews (strand asymmetry in ‘T’ vs. ‘A’ and ‘G’ vs. ‘C’ usage). These 
biases arise from the complex interplay of differential mutation rates and multiple 
selective constraints (Morton and Morton 2007; Vetsigian and Goldenfeld 2009), 
particularly for energy efficiency (Chen et al. 2016). Bacterial chromosomes are 
replicated in both directions, from the origin of replication site to the terminator site; the 
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"leading" strand is replicated continuously while the "lagging" strand is replicated in 
segments. Some genes are transcribed in the same direction as they are replicated 
(“leading strand genes”) while others are transcribed in the reverse direction (“lagging 
strand genes”). These opposite combinations can lead to distinctive skew patterns; their 
study can reveal details of the multiple compositional constraints and their interactions, 
and ultimately inform about the DNA repair capacity, the metabolism and the lifestyle of 
the species (Dutta and Paul 2012). 

Extreme examples of compositional biases are found among species in the 
family Borreliaceae, which comprises a variety of tick-borne spirochetes and includes 
species causing Lyme disease (genus Borreliella, originally Borrelia) as well as those 
causing relapsing fever (genus Borrelia) (Cutler, Ruzic-Sabljic, and Potkonjak 2017). 
Since its discovery in 1982 (Burgdorfer et al. 1982), the Borreliella burgdorferi 
spirochete has been of particular interest in the United States as the primary causative 
agent of Lyme disease. The subsequent sequencing of B. burgdorferi in 1997, has 
allowed for an in depth exploration of the many intriguing features of the genome of this 
bacterium, from is unusual structure (one large linear chromosome, several linear and 
circular plasmids) to its relatively low G+C content (Fraser et al. 1997). There is some 
evidence that smaller genomes tend to have lower G+C content than larger ones 
(Foerstner et al. 2005). Obligate intracellular organisms also tend to have low G+C 
content (Rocha 2004; Dutta and Paul 2012). 

A number of studies have reported unusually high nucleotide skews in B. 

burgdorferi, with increased levels of ‘G’ and ‘T’ in third codon positions on the leading 
strand and increased ‘C’ and ‘A’ on the lagging strand (Mackiewicza et al. 1999; 
McInerney 1998). One study in particular (Lobry and Sueoka 2002) found B. burgdorferi 
to have the most extreme difference between leading and lagging strand skews among 
the 43 genomes investigated. Several hypotheses have been put forward for the high 
skew seen in B. burgdorferi’s high skews; both mutation and selection biases may play 
a role (Hildebrand, Meyer, and Eyre-Walker 2010; Wei and Guo 2010), variously 
induced by replication, transcription and translation constraints. Furthermore, the 
possible loss of some DNA repair genes may contribute to the low G+C content and 
heightened skew seen in B. burgdorferi (Zhao et al. 2015; Lind and Andersson 2008).  

Multiple methods have been proposed for quantifying compositional biases and 
skews, ranging from simple computation in fixed-size windows along the genome, to 
very detailed stratification of nucleotides by direction of transcription and replication, 
codon position, codon adaptation index, and more. Some studies use the relative 
synonymous codon usage (RSCU) as a measure for skew, which focuses exclusively 
on the 3rd codon position. A recent study introduced several other metrics of qualifying 
and quantifying genome skew (Wei and Guo 2010); they computed Z curves (R. Zhang 
and Zhang 1994) using nucleotide counts and biases, and defined nine metrics on 
which to perform correspondence analysis (COA). COA was also performed on 
absolute codon counts and on the commonly used metric of RSCU. In combination, 
these metrics revealed significant differences in skew between genes transcribed on the 
leading and lagging strands. 

Thanks to the much expanded availability of complete genome sequences of 
bacterial species, it is now possible to perform large-scale comparative genomics 
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studies (Morton and Morton 2007; Necşulea and Lobry 2007; Chen et al. 2016). A much 
larger number of bacterial genomes have been drafted, assembled to different levels of 
contiguity (contigs, scaffolds) and tentatively annotated using automated pipelines. Most 
of the existing methods for analyzing compositional biases and skews rely on fully or 
mostly contiguous genomic sequence and on the availability of detailed annotation of 
genes; such methods are much less applicable to the study of drafted, incomplete 
genomes. 

We present here three novel metrics for quantitative analysis of genome skews. 
Our metrics are resilient to assembly status and work well on incomplete genomes with 
draft annotation. Using these metrics, we analyzed a large collection of bacterial 
genomes—both complete and drafted. We identified several groups of species and 
genera that present as outliers for one or more of the novel metrics. These outlier 
species are frequently pathogenic and tend to have unusual lifestyles, like B. 

burgdorferi. 

Materials and Methods 
Genomes studied 
We obtained from NCBI the genome sequence (in FASTA format) and current 
annotation (in GFF format) for 7948 bacterial species. We downloaded the 
“assembly_summary.txt” file from NCBI’s genome FTP site. This file provided various 
details on 86,822 genome assemblies including the organism name, RefSeq category 
(whether the genome considered “reference” for the species, “representative”, or 
otherwise) and assembly level (whether the genome is considered “completed”, or 
whether it is “incomplete” - assembled to chromosome, scaffold or contig level). 
Studying this file, we selected and downloaded: 

1) 1581 “completed” genomes, (125 “reference”, 1456 “representative”), 
2) 3303 “incomplete” genomes, (2 “reference”, 3301 “representative”), and 
3) 3064 additional genomes, not repeating species names from the previous two 

sets, and prioritizing more advanced levels of completion where multiple 
assemblies are available for a given species. 
We removed from further analysis 210 genome assemblies for which the longest 

available sequence was shorter than 100 kb. The final set of genomes analyzed 
included 7738 assemblies. 
 
Identification of origins of replication and terminator sites 
For each sequence (chromosome, plasmid, scaffold and contig) in each genome 
assembly, we identified likely origins of replication and replication terminator sites using 
the GC disparity method (Ren Zhang and Zhang 2005), namely by identifying the 
minimum and maximum difference between the cumulative count of G and C along the 
genome. This method is independent of gene annotation and arbitrary window sizes; it 
can also efficiently determine the likely direction of replication for sequence fragments 
(scaffolds and contigs), whether or not they include an origin of replication or a 
terminator site. 

When the resulting origin or terminator site lay within 1% of either end of the 
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sequence, we corrected the location to coincide with the nearest sequence end. 
 
Segmentation and analysis 
We used available gene annotation (in the GFF files) to segment each sequence 100 kb 
or longer into a series of contiguous and disjoint segments which can be genes 
(including CDS, tRNA, and rRNA) or intergenic segments. We stratified intergenic 
segments by considering the relative orientations of the flanking genes: between two 
genes in the same orientation, or between two genes in opposite orientations (“head to 
head” or “tail to tail”). Infrequently, consecutive gene segments may be annotated as 
overlapping. We treated the overlapping segments as intergenic. 

We computed for each segment (genic or intergenic) its length, G+C content, GC 
skew, and TA skew. We further determined for each oriented segment (namely genes 
and intergenic segments between genes transcribed in the same orientation) whether 
their orientation is the same or opposite to the direction of replication, i.e., whether they 
are on the leading or lagging strand, relative to origin and terminator sites predicted as 
described above. 
 
Computation of characteristic skews 
Given a set of comparable segments in a genome assembly (e.g., all genes on the 
leading strand), we computed the average skews (GC and TA) for the set as the 
average of the corresponding individual segment skews, weighted by segment length. 
This yields four characteristic skews: leadGC, lead TA, lag GC and lag TA. We also evaluated 
using weighted medians; this yielded very similar results (not shown). 
 
Computation of the skew cross product and dot product metrics 
The set of four characteristic skews for a species can be interpreted as two 
characteristic skew vectors: one for the leading strand genes (leadGC, lead TA) and the 
other for the lagging strand genes (lagGC, lag TA). We computed the skew cross product 
metric as: 
 
 cross_product(lead, lag) = |lead| • |lag| • sin( θ ) (1) 

 
where |lead| = sqrt(lead GC

2 + lead TA
2), |lag| = sqrt(lag GC

2 + lag TA
2), and θ  is the angle 

between the two vectors. Similarly, we computed the skew dot product metric as: 
 
 dot_product(lead, lag) = |lead| • |lag| • cos( θ ) (2) 

 
Computation of the skew deviation metric 
We modeled each of the four characteristic skews (leadGC, lead TA, lag GC and lag TA) as a 
function of the G+C content for 7738 bacterial genome assemblies. For each 
characteristic skew we separated the genome assemblies with G+C content below or 
above 50% G+C (3635 and 4103 genomes, respectively), and fitted a robust regression 
line using the least trimmed sum of squares as implemented in the R function 
MASS::lqs() (Venables and Ripley 2002). We then computed a single skew deviation 
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summary metric for each genome as the root mean square deviation (RMSD) from the 
regression line across the four characteristic skews.  

Results 
The genomic skews of B. burgdorferi are anti-correlated  
A map of the GC and TA skews in 1 kb bins along the main chromosome of B. 

burgdorferi B31 shows that most genomic regions have either a strong GC skew or a 
strong TA skew (Fig. 1A). Some genomic bins show a combination of both types of 
skew, such that the sum of the two skews (G+T vs. C+A) appears to be almost 
constant; this is particularly evident when plotting the TA skew vs. the GC skew (Fig. 
1B). Indeed, the strength of the two skews is complementary and anticorrelated. When 
normalizing the direction of the skews to be relative to the leading strand, we observe 
that the combined skew has a narrower distribution (0.270 +/- 0.099) than expected 
from those of the individual skews (GC skew: 0.179 +/- 0.132; TA skew: 0.091 +/- 0.112; 
expected deviation for their combination: 0.173). The correlation between GC and TA 
skews is -0.68. The plasmids of B. burgdorferi also have significant skews (Picardeau, 
Lobry, and Hinnebusch 2000). 

In B. burgdorferi, the majority of genes are transcribed in the same direction as 
they are replicated (‘leading strand genes’, blue in Fig. 1) while some are transcribed in 
the direction opposite to replication (‘lagging strand genes’, orange in Fig. 1). Leading 
strand genes tend to display stronger GC skew (Fig. 1C), while lagging strand genes 
have strong TA skews. In intergenic segments (red and green in the figure), the two 
skews tend to be positively correlated. 

The characteristic skews of B. burgdorferi 
Since the clear symmetry in the skew comparison plot for B. burgdorferi (Fig. 1) reflects 
the opposite characteristics of the two halves of the chromosome (and likewise for each 
plasmid), each leading from the origin of replication to a terminator (or telomere, for a 
linear chromosome or plasmid), it is appropriate and convenient to express the skews 
relative to the leading strand orientation. This transformation simplifies the 
representation, showing two main clusters of genes corresponding to genes transcribed 
on the leading strand vs. on the lagging strand  (Fig. 2). These two clusters can be 
represented by their average TA and GC skews, weighted by gene length (see 
Methods). We thus computed the four characteristic skews for B. burgdorferi: lead GC = 
0.2590, leadTA = 0.0215, lagGC = 0.0161 and lagTA = 0.2110. 

We visualized these skews as two vectors and computed the angle between 
them θ  = 80.89° (Fig. 2, inset). Then, based on the length and angles of these two 
vectors, we computed the skew cross product and dot product metrics for B. 

burgdorferi: cross_product(lead, lag) = 0.0584, dot_product(lead, lag) = 0.0075. For 
other Borrelia and Borreliella species, these respectively ranged from 0.0562 to 0.0781 
and from 0.0031 to 0.0293. 
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Learning from thousands of genomes 
We similarly computed characteristic skews, angles and skew metrics for 7738 bacterial 
genome assemblies (see Methods). Visualization of these species-specific parameters 
demonstrates the wide diversity of bacterial genome composition; a few select 
examples are shown in Fig. 3. We observed genomes with strong skews and with 
negligible skews, at all possible angles between the skew vectors. We also created a 
web interface for generating species-specific skew plots and exploring their skew 
metrics: http://db.systemsbiology.net/gestalt/cgi-pub/skewSegmentPlot.pl. 

We compared the four characteristic skews of 7738 bacterial genome assemblies 
with their corresponding G+C content (Fig. 4). We observed that all skews are 
correlated with G+C content, and largely decrease in absolute value with increasing 
G+C content. These relationships are different for bacterial genomes with low vs. high 
G+C content. In fact, we observed a largely bimodal distribution of G+C content among 
sequenced bacterial genomes (Fig. 5, lower panel). We thus fitted robust using the least 
quantile of squares method separately for bacterial genomes below and above 50% 
G+C content, and computed the deviations from the expected skews for each bacterial 
genome assembly. 

The lead GC and lag TA values of Borreliaceae genomes are large and are clear 
outliers relative to the entire data set of 7738 genomes. On the other hand, while the 
Borreliaceae leadTA and lag GC are close to zero and are not outliers relative to the entire 
data set, they are unusual for bacterial species with low G+C content, which tend to 
have negative values for these characteristic skews (Fig. 4). The deviations of 
characteristic skews for B. burgdorferi from the multi-genome fit are 0.091, 0.120, 0.106 
and 0.124 for leadGC, lead TA, lag GC and lag TA, respectively; Borrelia species that cause 
relapsing fever have even larger deviations from the expected values. Thus, 
Borreliaceae genomes are unusual for all four characteristic skews. 

Three novel metrics for analyzing genome skews 
We described above several parameters for quantifying skews in individual bacterial 
genomes: the four characteristic skews, and the magnitudes and angles of the vectors 
they define. Using these parameters, we defined two interrelated metrics for comparing 
and contrasting the skews of leading strand vs. lagging strand genes: the skew dot 
product and the skew cross product (see Methods). Furthermore, the availability of 
many thousand bacterial genome assemblies allowed us to compute for each the 
expected values for each characteristic skew, as a function of the G+C content. We 
used the observed deviations from these expected values to define a third metric - the 
regression root mean squared deviation (RMSD). 

We computed these three metrics for 7738 bacterial genome assemblies and 
evaluated their relationship with G+C content (Fig. 5). For high G+C content bacteria, 
we observed that the dot product and cross product metrics are much more constrained 
than for lower G+C content species; these two metrics are most diverse for bacterial 
genomes under ~35% G+C. Compared to these two metrics, the regression RMSD 
metric is more diverse for all levels of G+C content. Borreliaceae genomes are clear 
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outliers for all three metrics. 
Finally, we combined all three metrics to generate a map of genome skews for all 

bacterial genomes (Fig. 6). In this map, most high G+C content bacteria are restricted to 
near the origin, while low G+C content bacteria show a more diverse spread. 
Borreliaceae genomes are seen as clear outliers, with the most extreme skew values 
corresponding to the group of Borrelia genomes that cause relapsing fever. Genomes in 
the genus Ehrlichia (see example in Figure 3) are also outliers in all three metrics and 
show similar skew values as Borreliella genomes. Ehrlichia are intracellular 
vector-borne pathogens of vertebrates (Dunning Hotopp et al. 2006); like Borrelia, they 
have diminished biosynthetic abilities. Ehrlichia are in the Rickettsiales order and are 
phylogenetically unrelated to Borreliaceae; the genome of Ehrlichia canis has a single 
circular chromosome and no plasmids (Mavromatis et al. 2006). Multiple other genera 
became evident as outliers of interest, discussed below. We provide a table of skew 
characteristics for the 7738 bacterial genomes Supplemental Table 1. 

Discussion 
We have devised three novel metrics to study bacterial genome composition biases, 
integrating knowledge of the nucleotide skews in annotated genes, the direction of 
transcription relative to replication, and the G+C content of the genome. 

The first two metrics (dot product and cross product) are computed based on 
knowledge of an individual genome’s characteristic skew vectors, and they quantify the 
strength and relationship between the mutation and selection pressures on genes on 
the leading vs. lagging strands. 

Positive values of the dot product metric (Fig. 6, top) indicate similar 
compositional constraints on all genes, relative to the direction of replication; an 
example of this pattern is observed in the obligate intracellular parasite Chlamydia 

pneumoniae (Kalman et al. 1999) (Fig. 3). Conversely, negative dot product values (Fig. 
6, bottom) reflect opposite compositional constraints on leading and lagging strand 
genes; extreme examples of this pattern are observed in fusobacteria including 
Fusobacterium periodonticum (Slots, Potts, and Mashimo 1983), Leptotrichia buccalis 
(Ivanova et al. 2009), and Streptobacillus moniliformis (Nolan et al. 2009), the causal 
agent of rat bite fever. Positive dot product values can thus be interpreted as reflecting 
constraints driven mostly by the replication process, while negative dot product values 
largely reflect transcriptional and translational constraints. The cross product metric 
quantifies the strength and orthogonality of the compositional skew vectors for leading 
and lagging strand genes. Genomes with high values of the cross product metric (Fig. 6, 
right) demonstrate skew patterns inconsistent with purely replicational or transcriptional 
constraints; Borreliaceae and Ehrlichia species are prime examples of this pattern. 

Borreliaceae and Ehrlichia species lack amino acid and nucleotide synthesis 
pathways; the observed skew patterns in these pathogens may thus reflect a relaxation 
of the selection for energy efficiency that drives nucleotide usage and thus skews (Chen 
et al. 2016), possibly combined with more complex constraints imposed by the a life 
cycle that involves recurring transitions between mammalian and invertebrate (tick) 
hosts. We observed similar skew patterns in Kinetoplastibacteria (Fig. 6), which are 
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endosymbionts of insect-infecting trypanosomatid flagellates (Alves et al. 2013) with 
multiple biosynthetic adaptations to life in the intracellular environment. Likewise, we 
observed distinct skew patterns among Blochmannia species (Fig. 6); these are also 
intracellular endosymbionts that lost multiple biosynthetic pathways and rely on the 
metabolic machinery of their carpenter ant hosts (Gil et al. 2003). 

The third metric (regression RMDS) capitalizes on the current availability of 
thousands of complete or drafted bacterial genomes to empirically assess how unusual 
a genome’s skews are relative to the expected values as learned from other genomes. 
This analysis, which has not been possible until recent times, revealed that bacterial 
genomes with low G+C content typically have negative TA skews in leading strand 
genes and GC skews in lagging strand genes, and that these negative skews increase 
in magnitude as G+C content decreases (Fig. 4). On the background of these trends, 
the weakly positive skews observed in Borreliaceae species are highly unusual. This 
pattern is not evident relative to the global collection of genomes since the Borreliaceae 
skews are comparable to those observed in high G+C content bacteria. Our regression 
analysis quantifies these deviations from expectation and integrates them into a unified 
metric that highlights the unusual skews in Borreliaceae species (Fig. 5) and also 
identifies other species as having skew patterns that are significantly unusual relative to 
the bulk of bacterial species. Of particular note are Phytoplasma species (Fig. 6); these 
are intracellular pathogens of multiple plant species that use insects as transmission 
vectors (Tran-Nguyen et al. 2008; Hogenhout et al. 2008), in similarity to Borreliaceae 
and Ehrlichia for mammals. 

We described here three novel metrics for quantifying bacterial genome 
composition skews and presented examples of their application to identify bacterial 
species with unusual skew patterns. Our metrics take advantage both of information 
about the genome of a single species and of patterns discernable from studying 
genomes of thousands of species - even those not yet finished and fully annotated. 
While some of the genera identified as skew outliers are phylogenetically close (e.g., 
Fusobacterium, Streptobacillus and Leptotrichia), our metrics identified similar skew 
patterns in genera of bacteria that are phylogenetically unrelated, like Borrelia, Ehrlichia 
and Kinetoplastibacterium, and (when considering the RMSD metric) Phytoplasma. 
These very disparate bacterial species share lifestyle characteristics, suggesting that 
our novel metrics successfully capture effects on genome composition of biosynthetic 
constraints and of interaction with the hosts. 
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Genome skew metrics 

Figure legends 
Figure 1. Bin-wise and gene-wise representations of genome skews in B. burgdorferi. A: 
TA (grey) and GC (black) skews in 1 kb bins along the (linear) main chromosome (top) 
and map of annotated genes and intergenic segments (bottom) showing strandedness 
and length of each segment: leading strand genes in blue, lagging strand genes in 
orange, intergenic segments flanked by genes in equal orientation in green, and 
intergenic segments flanked by genes in opposite orientations in red. The location of the 
origin of replication is evident from the sharp switch in skew sign from negative to 
positive. B: Comparison of skews per 1 kb bin. C: Comparison of skews per gene and 
intergenic segment; circle area is proportional to segment length. Skews with absolute 
values between 0.5 and 1 shown in compressed scale for clarity. 
 
Figure 2. TA vs. GC skews of gene and intergenic segments oriented relative to the 
leading strand. Graphic elements as in Fig. 1C. The vectors point from the origin (zero 
skews) to the weighted average of skews for genes on the leading strand (+) and genes 
on the lagging strand (-). Inset: definition of the angle θ  between the two vectors. 
 
Figure 3. Examples of TA vs. GC skew plots for several bacterial species. Graphic 
elements as in Figs. 1C and 2. Each plot displays skews in the range [-0.5, 0.5]. 
Lower-left inset for each plot: average genomic G+C content for that species. 
Lower-right inset for each plot: skew cross-product value for that species. 
 
Figure 4. Relationship between the four characteristic skew values and G+C content, for 
7738 bacterial genomes, highlighting Borreliaceae species (red points). Red lines 
represent robust regression lines computed by least quantile of squares method. 
 
Figure 5. A: Skew metrics vs. G+C content for 7738 bacterial genomes, highlighting 
Borreliaceae species (red points). From top to bottom: cross product, dot product, 
regression RMDS and histogram of number of species studied.  
 
Figure 6. Integration of skew metrics (dot product vs. cross product, point size 
represents regression RMSD) for 7738 bacterial genomes, highlighting some genera of 
interest. All other genomes colored by G+C content: cyan for G+C<50%, pink for 
G+C>=50%. 
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