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SUMMARY
Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene
regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables
the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availabil-
ity of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the
locations of genomic footprints is lacking. Here, we develop a scalable footprinting workflow using two state-
of-the-art algorithms: Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE
DNase-seq experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We
validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We demonstrate that
the locations, depth, and tissue specificity of footprints predict effects of genetic variants on gene expression
and capture a substantial proportion of genetic risk for complex traits.
INTRODUCTION

Regulation of gene expression by transcription factors (TFs)

forms the basis for tissue- and cell-type differentiation arising

from complex interplay between the TFs and the chromatin ar-

chitecture in gene regulatory regions (Neph et al., 2012a; Tewhey

et al., 2016). In humans, genetic perturbation of TF binding sites

is thought to be an important mechanism by which single-nucle-

otide polymorphisms (SNPs) influence risk for human disease

(ENCODE Project Consortium, 2012; Gusev et al., 2014; Maur-

ano et al., 2012). Thus, characterizing the cell-type-specific oc-

cupancy of TFs at their genomic binding sites is a critical goal

in genomics, providing insight into networks of TFs and their

cell-type-specific target genes, as well as causal mechanisms

underlying risk for human disease (Ament et al., 2018; Claussnit-

zer et al., 2015; Gupta et al., 2017; Moyerbrailean et al., 2016;

Pearl et al., 2019).
This is an open access article under the CC BY-N
Mapping human gene regulation requires comprehensive re-

sources of tissue- and cell-type-specific TF binding sites. Major

efforts over the past decade have produced vast quantities of

public epigenomic data that have dramatically expanded the

functional annotation of the human genome (Encode Project

Consortium, 2004; Battle et al., 2017; Ward and Kellis, 2016),

yet our understanding of cell-type-specific TF binding sites re-

mains far from complete. Annotation of TF binding sites based

solely on the locations of sequence motifs is imprecise because

only �1% of motif instances are occupied by a TF at any given

time (Neph et al., 2012a). Similarly, information about the loca-

tions of promoters and enhancers lacks sufficient specificity

because many genetic variants in these regions do not affect

gene expression (Tewhey et al., 2016). TF occupancy can be as-

certained with high sensitivity and specificity through chromatin

immunoprecipitation followed by deep sequencing (ChIP-seq),

in which an antibody specific to a TF is used to pull down
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:madduri@anl.gov
mailto:nathan.price@systemsbiology.org
mailto:sament@som.umaryland.edu
https://doi.org/10.1016/j.celrep.2020.108029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108029&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Resource
ll

OPEN ACCESS
genomic DNA fragments occupied by that TF in a given sample.

However, high-quality ChIP-seq data have been generated for

only a minority of all human TFs and often used standard cell

lines rather than disease-relevant human tissues.

Genomic footprinting is a higher-throughput approach that

predicts TF genomic occupancy by combining information

from open chromatin assays (such as DNase sequencing

[DNase-seq]) with information about the locations of sequence

motifs recognized by the DNA binding domains of TFs. DNase-

seq assays are predicated on accessibility of genomic DNA to

DNase I, where regions of open chromatin are susceptible to

cleavage by DNase I. Binding of TFs and other DNA binding pro-

teins can lead to a relative difference in the number of cleavage

events in discrete regions along the genome, resulting in a foot-

print (Galas and Schmitz, 1978). Computational algorithms have

been developed to identify footprints from high-throughput

DNase hypersensitivity (DHS) data, typically using one of two

strategies: (1) sliding window approaches in which the relative

number of DNase cleavage events are counted along a sliding

window of the genome, agnostic to the absence or presence

of a TF binding motif (Boyle et al., 2011; Gusmao et al., 2014;

Neph et al., 2012b; Piper et al., 2013; Sung et al., 2014) and (2)

approaches that begin with the known location for a TF binding

motif and model the DNase cleavage patterns around it for all

sites in the genome (Cuellar-Partida et al., 2012; Kähärä and Läh-

desmäki, 2015; Pique-Regi et al., 2011; Sherwood et al., 2014;

Yardımcı et al., 2014). Validation of these approaches typically

has involved comparison of the footprints for individual TFs to

binding sites found by ChIP-seq. Notably, the computational

identification of footprints from high-throughput data remains

an area of active research, because existing algorithms detect

genomic occupancy for only a subset of TFs.Moreover, because

of redundancy in the sequence specificity of TFs, footprinting

generally cannot distinguish which member of a TF family is

occupying a footprint. Nonetheless, the accuracy and reproduc-

ibility of TF binding site predictions from footprinting analysis has

begun to rival that of ChIP-seq, and DNase-seq footprinting has

successfully been used to predict the binding sites for hundreds

of TFs in a parallel approach.

One of the most important applications of comprehensive at-

lases of TF binding sites will be to functionally annotate genetic

risk variants for human diseases. Many studies have shown

that disease-associated SNPs are enriched in gene regulatory

regions, including open chromatin regions identified through

DNase-seq and ATAC-seq experiments (de la Torre-Ubieta

et al., 2018; Finucane et al., 2015; Gusev et al., 2014; Maurano

et al., 2012). However, genome-wide association study

(GWAS) risk loci are defined by large sets of genetically corre-

lated SNPs with similarly strong statistical associations to dis-

ease, of which only a subset are thought to be functional and

causal for disease risk. It remains controversial how many of

these causal SNPs disrupt gene regulation by altering the spe-

cific base pairs occupied by TFs versus other mechanisms.

Several studies have identified risk loci for traits such as obesity

and schizophrenia in which causal variants appear to functionally

alter binding sites for key TFs (Claussnitzer et al., 2015; Gupta

et al., 2017; Pearl et al., 2019). However, other studies question

the generalizability of this insight and indicate that TF binding
2 Cell Reports 32, 108029, August 18, 2020
sites in existing databases do not fully predict causal variants

(Moyerbrailean et al., 2016). One explanation for this discrep-

ancy is that existing TF binding site databases do not include

sufficient amounts of epigenomic data from disease-relevant tis-

sues. Because the gene regulatory consequences of non-coding

SNPs are likely to vary dramatically across tissues and cell types

(Claussnitzer et al., 2015; Fairfax et al., 2014), these existing da-

tabases may miss context-specific effects of variants on TF oc-

cupancy. In addition, there is considerable variability in the

sensitivity and specificity of footprinting algorithms, and it is un-

clear which approaches will be best suited for this task.

Here, we developed a comprehensive resource of genomic

footprints across 27 human tissues, using data from 192

DNase-seq experiments from the Encyclopedia of DNA

Elements (ENCODE). Before our work, there was no publicly

available, scalable workflow using these data for the purpose

of producing footprints. These analyses revealed an expansive

landscape of tissue-specific genomic occupancy for 1,530

TFs. We validated our database based on ChIP-seq and expres-

sion quantitative trait loci (eQTLs), and we demonstrated that tis-

sue-specific footprints are strongly and specifically enriched for

disease-associated genetic variation. We have made our foot-

print database and the underlying cloud-based computational

workflow available in a user-friendly and intuitive format (links

available in STAR Methods) (Madduri et al., 2019).

RESULTS

A Comprehensive Atlas of Genomic Footprints across
Human Tissues
ENCODE-generated DNase-seq FASTQ files from 192 experi-

ments in 27 tissues were downloaded from the ENCODE data

portal (https://www.encodeproject.org/). The tissue-specific

genomic occupancy of 1,515 TFs was then predicted through

genomic footprinting analyses using the workflow pictured in Fig-

ure 1A anddetailed in STARMethods. First, sequence readswere

aligned to GRCh38 using SNAP (Zaharia et al., 2011). Because

the DNase-seq data consist of short reads, we generated two

alignments: one using the default 20 bp seed length (Seed20)

and another using a 16 bp seed length (Seed16). We then identi-

fied regions of open chromatin in each of the 192 experiments us-

ing F-seq, followedby detection of footprints using bothHINT and

Wellington algorithms. Footprints detected in each of the 192

experiments were then grouped by tissue, producing 27 tissue-

specific footprint maps, with separate maps for each seed size

and footprinting algorithm. In general, seed size had only a

modest impact.�70%of the footprints had complete overlap be-

tween the two seed sizes (Figure S1A). In addition, we observed

only a moderate relationship between the number of footprints

found in a sample and the depth of sequencing (Figure S1B).

Overall, HINT identified more footprints than Wellington.

Footprints from HINT and Wellington are identified without

consideration of underlying motif sequence. Therefore, to predict

which TFs occupy each footprint, we used Find Individual Motif

Occurrences (FIMO) to create a catalog of all genome-wide in-

stances of 1,530 sequencemotifs recognized by 1,515 TFs (Grant

et al., 2011). In addition to the motif-TF mappings provided by the

aforementioned databases, we expanded the motif-TF mappings

https://www.encodeproject.org/


Figure 1. Footprint Atlas Workflow and

Coverage Statistics

(A) Footprints workflow overview. Each tissue type

can have multiple quantities of patients and repli-

cates. Each replicate is aligned using SNAP-aligner.

All replicates for each patient are merged using

Samtools. Finally, footprints for each BAM file are

produced usingWellington andHINT and stored in a

database.

(B) Percentage of the genome covered by the

footprints for each tissue type and all tissues. Yellow

is without filtering, and dark blue is filtering with

HINT score > 200 andWellington score <�27 (each

method has its own scale and distribution).

(C) Footprints from the brain for HINT20 are ordered

based on the number of footprints and summed.

The light blue graphs represent the total number of

footprints in each sample (top is without filtering on

score; bottom is filtered as in B). The dark blue line

represents the cumulative percentage of the

genome covered.
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to incorporate families of TFs with similar DNA sequence speci-

ficity, using information from TFClass (Wingender et al., 2015)

(Tables S1 and S2; Figure S2). This resulted in �1.34 billion

sequence-to-TF matches (p < 10�4) before intersection with foot-

prints, spanningalmost80%of thegenome.Thesemotif instances

were then intersectedwith the footprints fromWellingtonandHINT

to produce an atlas of predicted TF occupancy in each tissue.

When considering all samples from all tissues, the most liberal

thresholds resulted in 34% coverage of the genome being repre-

sented in the atlas for at least one tissue. The brain had the high-

est genome coverage at 14.9%, followed by skin (9.8%) and

lymphoblast (8.9%). Urinary bladder had the lowest percentage

of coverage at 1.1% (Figure 1B). Sample size and sequencing

depth were the main determinants for the number of tissue-spe-

cific footprints identified in our atlas. However, intrinsic biological

differences in tissue complexity also influence the number of

distinct footprint locations. For example, we found strong over-

lap in footprint locations across the 46 experiments from skin

(average pairwise Jaccard similarity index = 0.28), consistent

with skin being a relatively homogeneous tissue. By contrast,

the footprints detected in the 29 experiments from brain were

less homogeneous (average pairwise Jaccard similarity score =

0.16), which likely reflects the highly specialized and disparate

cell types and cell-type-specific gene regulation across brain re-

gions. As a consequence, we identified more brain footprints

than skin footprints, despite having 50% more skin samples.

An outstanding question is to what extent additional samples

would add previously unseen footprints. To address this, using

footprints derived from the HINT algorithm with seed length 20

(HINT20), we ordered the brain samples from most to fewest

footprints and calculated the additional percentage of the

genome covered by each sample (Figure 1C). The first sample
contributed 3.25 million footprints span-

ning 1.75% of the genome, whereas the

last sample added 235,000 novel foot-

prints and 0.04% novel genome coverage.

We repeated the same analysis using only
high-quality footprints based on HINT and Wellington scores

(see the next section). As expected, this analysis revealed even

greater overlap across samples, because many footprints de-

tected in only a single sample are of low quality (Figure 1C, bot-

tom). These results suggest that at least for well-sampled tissues

such as brain, our atlas captures most detectable footprints.

Validation and Filtering of Footprints with ChIP-Seq and
Machine Learning
Next, we sought to validate TF binding site predictions in our atlas

and chose appropriate thresholds at which footprints reliably indi-

cate TF occupancy. For this purpose, we compared footprints

from 21 DNase-seq experiments in lymphocytes to predicted TF

binding sites (peak regions) from ChIP-seq of 66 TFs in the same

cell type. The genomic background for this analysis is the set of

all genome-wide instances of the sequence motifs recognized

by a given TF. On their own, these motif instances have an

extremely high false-positive rate > 90%. We used the footprints

fromall 21 samples todefine two scores at eachgenomic location:

(1) the best footprint score, defined as the highest score at this

location in any samples, and (2) the footprint fraction, defined as

the proportion of independent samples with a non-zero footprint

score.We then tested for a linear relationship between these foot-

print scores and the likelihood that a motif instance corresponded

to a true-positive binding site fromChIP-seq, testing performance

via the Matthews correlation coefficient (MCC), area under the

receiver operator curve (AUROC), and area under the precision-

recall curve (AUPR). The most accurate predictor was the best

HINT20 score, which achieved a maximum MCC of 0.42, corre-

sponding to AUROC > 0.9 (Figure 2). The high AUROCwas driven

by true negatives,which comprise 3,936,242of the 4,110,504 total

observations. Most true negatives had low HINT scores. True
Cell Reports 32, 108029, August 18, 2020 3



Figure 2. Predictive Performance on a Held-Out Test Set of a Gradient-Boosted Decision Tree (GBDT) Model of the 62 TFs (264Motifs) in the
ENCODE-Generated ChIP-Seq Samples

We compare with baseline models that use only motif information, TSS distance, and GC content and to a linear model that uses all of these.

(A) Results using motifs devoid of footprint scores and metrics but including the following features: GC content, motif score, distance to TSS, and TF classes.

(B) Results for footprints generated from both Seed16 and Seed20 alignments using all aforementioned features, footprint scores, and footprint metrics. The

GBDTmodel obtains the best performance by nearly all metrics, though the amount bywhich it outperforms the linearmodel on the footprint data is in some cases

marginal enough that an interpretable linear model may be preferred for some applications.

The threshold in the third column refers to the decision boundary at which the continuous output of themodels, which varies between zero and one, is thresholded

and a classification decision is made. The aggregatemodels obtain good performance over a relatively wide range of thresholds compared with themodels using

individual methods.
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positives often had a high HINT score, but high HINT scores also

had a significant false-positive rate (FigureS3). True and false pos-

itive here are soft assignments, because ChIP-seq experiments

are imperfect predictors of TF occupancy.

We were curious whether performance could be improved by

combining footprint scores from multiple algorithms with addi-

tional information about genomic context. We employed a super-

visedmachine-learning approach, treating the ChIP-seq peaks as

true positives. We employed two machine-learning algorithms:

linear regression and gradient boosting trees implemented with

XGBoost.We constructed and evaluated a comprehensivemodel

that included as predictors the footprint scores from both HINT

and Wellington using both the 16 bp and 20 bp seed sizes. Addi-

tional predictors included a score for the strength of the match to

the sequencemotif, TF class, guanine-cytosine (GC) content, and

distance to a transcription start site (TSS). We compared this

comprehensive model to predictions based on footprint scores

alone, as well as to a baselinemodel that consideredmotif scores

and genomic context but ignored footprinting data.

In the comprehensive model, gradient boosting and linear

regression achieved maximum MCCs of 0.42 and 0.40, respec-

tively (Figure 2), The predictor with the largest contribution to

accuracy was the best HINT20 score, followed by the HINT20

footprint fraction (Figure 3). Prediction accuracy was lower in

the baseline models but remained better than chance (gradient
4 Cell Reports 32, 108029, August 18, 2020
boosting, MCC = 0.32; linear regression, MCC = 0.27) (Figure 2).

In these models, distance to the TSS was the most significant

contributor to the prediction. Although the maximum MCCs of

the HINT20 footprint-only versus comprehensive models were

identical (0.42), the footprint-only model had a relatively small

threshold window within which both true-positive and false-

negative error rates were well controlled. Therefore, incorpo-

rating information about genomic context does not dramatically

improve prediction accuracy but could potentially improve the

robustness of these predictions.

We used machine-learning models to select appropriate cut-

offs for high-quality footprints. We determined that a HINT score

> 200 and aWellington score <�27were optimal filtering thresh-

olds to control both false-positive and false-negative errors.

Applying these filters reduced the percentage of coverage of

the genome from 34% to 9.8% across all tissues (Figure 1B).

This filtered estimate is in line with current estimates for the frac-

tion of the genome that is actively involved in gene regulation.

HINT20 footprints with scores > 200 were used in downstream

analyses unless otherwise specified.

Footprints Predict Effects of Genetic Variants on Gene
Expression
An important goal for footprinting is to predict the gene regulato-

ry effects of non-coding SNPs. It has previously been shown that



Figure 3. Importance Matrix Quantifying the Contribution of Each

Feature when Trained and Tested on the ENCODEChIP-Seq Dataset

for 62 TFs
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most haplotypes with cis-acting effects on gene expression

(eQTLs) contain SNPs that are located within DNase I hypersen-

sitive regions (Handel et al., 2017). However, DHS regions span a

large fraction of the genome, andmany SNPswithin DHS regions

have no evidence for influencing gene expression. It remains

controversial whether footprints more precisely capture the

causal variants on eQTL haplotypes: some recent studies found

that only a small fraction of eQTL haplotypes overlap footprints

(Handel et al., 2017; Moyerbrailean et al., 2016), whereas others

have suggested stronger enrichment (Degner et al., 2012;

Schwessinger et al., 2017). To address this question, we exam-

ined overlap between footprints in our databasewith eQTLs from

the Genotype-Tissue Expression (GTEx) consortium.

Weevaluatedoverlapbetween footprints (HINT20scoreR200)

from our database with eQTLs in 44 tissues from GTEx (v.V6p)

(Battle et al., 2017). We focused on 1,561,655 genetic variants

significantly associated with the expression of a nearby gene

(<1 MB) and in the 95% credible set for that gene in at least one

tissue, based on Bayesian fine mapping with CAVIAR (Hormoz-

diari et al., 2014); i.e., the set of variants with 95% likelihood to

contain the causal eSNPs for the gene. Across all eQTL and foot-

print tissues, we found that 163,330 of these 1,561,655 variants

intersected a TF binding site from our footprint database (TFBS-

eQTLs). Counts of TFBS-eQTLs in individual tissues from our

footprint database ranged from 743 (urinary bladder) to 71,692

(extra-embryonic structure) (Figure 4A). We tested whether this

overlap was greater than expected by chance by mapping foot-

prints to all 11,959,406 genotyped and imputed variants in the

GTEx V6p dataset, followed by resampling permutations. We

found significant enrichments (p < 0.001) for all 27 footprint

tissue 3 44 eQTL tissue combinations. The overlap of footprints

and eQTLs in mismatched tissues likely reflects that many of the

strongest footprints and eQTLs are detected in multiple tissues

(Battle et al., 2017). Sample size differs dramatically between tis-

sues both in our footprint database and inGTEx,making it difficult

to discern biologically relevant tissue-specific effects. Therefore,

in subsequent analyses, we considered all eQTLs together,

regardless of the tissue in which they were discovered.

We also determined whether eQTL SNPs with the highest like-

lihood of being causal variants from linkage-disequilibrium (LD)-
based fine mapping with CAVIAR were also the most likely to

overlap a footprint. eQTL variants that overlapped a footprint

had higher posterior probabilities for being causal than eQTL

variants that did not overlap footprints (t = �61.4, p <<

1e�308). Indeed, we detected a strong positive association be-

tween a variant’s posterior probability of being causal and the

strength of enrichment for footprints that was consistent across

footprints from all 27 tissues (Figure 4B). Focusing on the 3,193

eQTL variants with posterior probabilities > 0.8, we found that

29.2% (932) overlap a footprint. Resampling permutations indi-

cated that this overlap for tissue-specific footprints is �10- to

40-fold greater than expected by chance. These results suggest

that a large fraction of eQTLs may be explained by causal vari-

ants that alter TF binding sites, with many of these effects

captured by footprints in our database.

Tissue-Specific Footprints Are Enriched for Disease-
Associated SNPs
Finally, we tested the hypothesis that high-scoring footprints are

enriched for genetic variants associated with disease risk. To

address this question, we studied genome-wide summary statis-

tics fromwell-powered GWAS of eight immune-related traits and

27 psychiatric, behavioral, and cognitive traits (STAR Methods;

Table S3). We hypothesized that heritability for immune traits

would be specifically associated with footprints in lymphocytes,

whereas heritability for neuropsychiatric traits would be specif-

ically associated with footprints in the brain.

When considering all tissue-specific footprints from our data-

base (HINT20 score > 0 in any sample), we found that footprints

from brain tissue were strongly enriched for heritability for brain-

related traits and footprints from lymphoblasts were strongly en-

riched for heritability for immune-related traits. However,

because most base pairs that are open chromatin have a non-

zero footprint score, this result is not distinguishable from previ-

ously reported enrichments of heritability in open chromatin. We

therefore examined whether footprints with higher scores

contributedmore to heritability than footprints with lower scores.

We used a partitioned heritability approach in which we divided

footprints into deciles based on their maximum tissue-specific

footprint scores.We found that footprints with the highest scores

in brain contributed disproportionately to heritability to brain-

related traits but were not strongly associated with immune traits

(Figure 5A). Conversely, footprints with the highest scores in lym-

phoblasts contributed disproportionately and specifically to her-

itability in immune-related traits (Figure 5B). Interestingly, we

also found that positions of open chromatin in the brain that

had low footprint scores (bottom decile) contributed dispropor-

tionately to risk for brain-related traits. Motif enrichment

analyses of the top versus bottom deciles indicated that these

segments of open chromatin are enriched for binding sites for

distinct families of TFs. For instance, motifs recognized by

several neurodevelopmental TFs (e.g., the LMX family) were

disproportionately found in the bottom decile; these neurodeve-

lopmental TFs are known to bind DNA more transiently than

other TF classes, leaving a less distinct footprint signature

(Baek et al., 2017) (Table S4). Altogether, our results support

the hypothesis that the enrichment of disease risk in open chro-

matin disproportionately results from variants that affect TF
Cell Reports 32, 108029, August 18, 2020 5



Figure 4. Footprints Overlap with Genetic

Variants that Affect Gene Expression

(A) Counts of eSNPs overlapping predicted TF

binding sites across all DHS tissues. Barplots indi-

cate the total number of eSNPs overlapping foot-

prints across all GTEx tissues.

(B) Comparison of CAVIAR eQTL scores with the

fold enrichment for TFBS-eQTLs.
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binding and indicate that a footprint’s score is positively associ-

ated with disease risk for many TFs.

DISCUSSION

Here, we have described a uniform workflow for DNase genomic

footprinting and generated a comprehensive atlas of TF binding

sites in 27 human tissues. We validated these footprints using

data from ChIP-seq and eQTL experiments. At optimal thresh-

olds, footprints in our database span 9.8% of the human

genome, describing an expansive landscape of tissue-specific

TF occupancy. We found strong, tissue-specific enrichments

of footprints for disease-associated SNPs from GWAS, demon-

strating the utility of our database to characterize gene regulato-

ry mechanisms underlying human disease.
6 Cell Reports 32, 108029, August 18, 2020
Machine-learning approaches yielded

several insights. First, footprinting infor-

mation improved predictive accuracy

compared with a baseline model.

Because ChIP-seq is an imperfect gold

standard, some footprints with no corre-

sponding ChIP-seq may nonetheless be

true binding sites for a TF. Footprinting

may identify a broader range of putative

binding regions relevant to gene regula-

tion, particularly in light of the strong rela-
tionship found with eQTLs. As a future direction, integration of

additional epigenomic data could provide additional predictive

power to discern active versus inactive binding sites.

We also demonstrated strong enrichments of heritability for

complex traits at the highest-scoring footprints, specifically in

disease-relevant tissues. Given that most risk variants in

GWAS fall within non-coding regions, this finding suggests that

disruption of TF binding may be a commonmechanism by which

genetic risk is conferred. These results build on previous findings

that heritability for complex traits is enriched in open chromatin

regions. Annotating risk variants with footprint scores improves

specificity and mechanistic insight compared with annotating

these SNPs based only on chromatin state. This finding demon-

strates the utility of our footprint atlas for fine mapping and other

systems-level interrogations of complex genetic traits. We found
Figure 5. Partitioned Heritability of Tissue-

Specific Footprints in Related GWASby Foot-

print Confidence Score Decile

(A) Partitioned heritability of brain footprints by

decile in 27 summarized brain-related traits. Box

plots indicate the median and interquartile range

of �log10 (p values ) across the 27 traits.

(B) Heritability of lymphoblast footprint deciles in 8

summarized immune-related traits. Decile 1, lowest

scores; decile 10, highest scores.
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that low-scoring footprints in the brain were highly associated

with risk and that these footprints disproportionately contained

motifs for developmental TFs. This indicates that caution should

be taken when using hard footprint score cutoffs, especially in

the brain.

This resource also represents a case study in the development

of scalable cloud-based systems for large-scale data analysis

(Madduri et al., 2019). The Globus Genomics workflow used to

create this resource can readily be extended to new open chro-

matin datasets and footprinting algorithms as they become

available, potentially including newly developed approaches

for open chromatin profiling in thousands of single cells. This

workflow is part of a family of interconnected tools being built

within our Big Data for Discovery Science (BDDS) center

(http://bd2k.ini.usc.edu). We have made user-friendly flat files

for all footprints in this analysis available at http://data.

nemoarchive.org/other/grant/sament/sament/footprint_atlas.
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Zhernakova, A., Heap, G.A., Adány, R., Aromaa, A., et al. (2010). Multiple com-

mon variants for celiac disease influencing immune gene expression. Nat.

Genet. 42, 295–302.

ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of DNA El-

ements) Project. Science 306, 636–640.

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA ele-

ments in the human genome. Nature 489, 57–74.

Fairfax, B.P., Humburg, P., Makino, S., Naranbhai, V., Wong, D., Lau, E., Jos-

tins, L., Plant, K., Andrews, R., McGee, C., and Knight, J.C. (2014). Innate im-

mune activity conditions the effect of regulatory variants upon monocyte gene

expression. Science 343, 1246949.

Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R.,

Anttila, V., Xu, H., Zang, C., Farh, K., et al.; ReproGen Consortium; Schizo-

phrenia Working Group of the Psychiatric Genomics Consortium; RACI Con-

sortium (2015). Partitioning heritability by functional annotation using

genome-wide association summary statistics. Nat. Genet. 47, 1228–1235.

Galas, D.J., and Schmitz, A. (1978). DNAse footprinting: a simple method for

the detection of protein-DNA binding specificity. Nucleic Acids Res. 5,

3157–3170.

Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occur-

rences of a given motif. Bioinformatics 27, 1017–1018.

Gupta, S., Stamatoyannopoulos, J.A., Bailey, T.L., and Noble, W.S. (2007).

Quantifying similarity between motifs. Genome Biol. 8, R24.

Gupta, R.M., Hadaya, J., Trehan, A., Zekavat, S.M., Roselli, C., Klarin, D., Em-

din, C.A., Hilvering, C.R.E., Bianchi, V., Mueller, C., et al. (2017). A Genetic

Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endo-

thelin-1 Gene Expression. Cell 170, 522–533.

Gusev, A., Lee, S.H., Trynka, G., Finucane, H., Vilhjálmsson, B.J., Xu, H., Zang,
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Deposited Data

Footprint BED files This paper http://data.nemoarchive.org/other/grant/

sament/sament/footprint_atlas/bed/

Footprint extended TSV files This paper http://data.nemoarchive.org/other/grant/

sament/sament/footprint_atlas/extended/

ENCODE DNase-seq https://www.encodeproject.org/ RRID: SCR_015482. For specific

accessions/experiments, see http://data.

nemoarchive.org/other/grant/sament/

extended/

Expression quantitative trait loci (eQTLs) Battle et al., 2017 http://hgdownload.soe.ucsc.edu/

goldenPath/hg19/database/

Background genotyped variants Battle et al., 2017 https://storage.googleapis.com/

gtex_analysis_v6/reference/

GTEx_Analysis_2015-01-12_OMNI_2.

5M_5M_450Indiv_chr1-22-X_

genot_imput_info04_maf01_

HWEp1E6_variant_id_lookup.txt.gz

Educational attainment GWAS Okbay et al., 2016 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Years_of_Education2.sumstats

Schizophrenia GWAS Schizophrenia Working Group Working

Group of the Psychiatric Genomics

Consortium, 2014

https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/PASS_Schizophrenia.

sumstats

Neuroticism GWAS Okbay et al., 2016 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/PASS_Neuroticism.

sumstats

Bipolar Disorder GWAS Psychiatric GWAS Consortium Bipolar

Disorder Working Group, 2011

https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Bipolar_Disorder.sumstats

Alcohol intake frequency GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

bi7t4rekkhpa4ks/1558.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Alcohol usually taken with meals GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

ra3tw6s1kw31ywn/1618.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0

Age completed full time education GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

o1o31tevhou822f/845.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Job involves heavy manual or physical work

GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

zswrzp8s19j28sz/816.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Job involves mainly walking or standing

GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

de1u2yul4cffb1i/806.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Age at first live birth GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

bqjiqclxdb195d6/2754_irnt.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0

Fluid intelligence score GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

t3lrfj1id8133sx/20016_irnt.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0
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Fedup feelings GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

kv6ltvrmkrugfy1/1960.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Frequency of tiredness lethargy in last

2 weeks GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

usoitcixaa39gtw/2080.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Mood swings GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

q4yv2y5u07z7qc6/1920.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Seen doctor GP for nerves anxiety tension

or depression GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

ow0kr506vn2fiox/2090.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Number of incorrect matches in round

GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

nb54tjjsoijf2x4/399_irnt.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Mean time to correctly identify matches

GWAS

http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

ysx8s20g8la9lm1/20023_irnt.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0

Daytime dozing sleeping narcolepsy GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

chtk02fbduvzv3r/1220.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Getting up in morning GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

0v2exws5j8z4yo7/1170.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Morningevening person chronotype GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

h6vnprrobkdia2d/1180.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Nap during day GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

q8fynq2rnkgttoi/1190.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Sleep duration GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

7tgjc9s68gp9d5a/1160.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Sleeplessness insomnia GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

jeolythrs18jk9p/1200.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Snoring GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

dvmbzveuc0htuj3/1210.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Current tobacco smoking GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

nwqshg5soaayh03/1239.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0

Ever smoked GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

2vxlmq7q7ozxgf9/20160.gwas.

imputed_v3.both_sexes.tsv.bgz?dl=0

Past tobacco smoking GWAS http://www.nealelab.is/uk-biobank/ https://www.dropbox.com/s/

29b2w1qc9erzlo4/1249.gwas.imputed_v3.

both_sexes.tsv.bgz?dl=0

Celiac GWAS Dubois et al., 2010 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/PASS_Celiac.

sumstats

Lupus GWAS Bentham et al., 2015 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/PASS_Lupus.

sumstats

(Continued on next page)
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Primary biliary cirrhosis GWAS Cordell et al., 2015 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Primary_biliary_cirrhosis.sumstats

Type 1 Diabetes GWAS Bradfield et al., 2011 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Type_1_Diabetes.sumstats

Crohns Disease GWAS Jostins et al., 2012 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Crohns_Disease.sumstats

Multiple sclerosis GWAS Sawcer et al., 2011 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Multiple_sclerosis.sumstats

Rheumatoid Arthritis GWAS Okada et al., 2014 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Rheumatoid_Arthritis.sumstats

Ulcerative Colitis GWAS Jostins et al., 2012 https://data.broadinstitute.org/alkesgroup/

sumstats_formatted/

PASS_Ulcerative_Colitis.sumstats

Human reference genome NCBI build 38,

GRCh37

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/grc/human

Software and Algorithms

SNAP Zaharia et al., 2011 http://snap.cs.berkeley.edu/

Samtools Li et al., 2009 http://samtools.sourceforge.net/

F-Seq Boyle et al., 2008 http://fureylab.web.unc.edu/software/fseq/

FIMO Grant et al., 2011 http://meme-suite.org/doc/download.html

HINT Gusmao et al., 2014 http://www.regulatory-genomics.org/hint/

introduction/

Wellington Piper et al., 2013 https://pythonhosted.org/pyDNase/

Tomtom Gupta et al., 2007 http://meme-suite.org/doc/download.html

GenomicRanges Lawrence et al., 2013 https://bioconductor.org/packages/

release/bioc/html/GenomicRanges.html

XGBoost Chen and Guestrin, 2016 https://xgboost.readthedocs.io/en/latest/

LiftOver Hinrichs et al., 2006 https://genome-store.ucsc.edu

LDSC Finucane et al., 2015 https://github.com/bulik/ldsc

Other

JASPAR MotifDB http://jaspar.genereg.net/

HOCOMOCO MotifDB https://hocomoco11.autosome.ru/

UniPROBE MotifDB http://thebrain.bwh.harvard.edu/uniprobe/

SwissRegulon MotifDB http://www.swissregulon.unibas.ch/

BDBags Madduri et al., 2019 https://github.com/fair-research/bdbag

ENCODE2Bag Madduri et al., 2019 https://github.com/fair-research/

encode2bag
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Seth

Ament (SAment@som.umaryland.edu).

Materials Availability
This study did not generate new unique reagents.
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Data and Code Availability
Footprint data files are freely available at http://data.nemoarchive.org/other/grant/sament/sament/footprint_atlas. Code and work-

flows available at https://github.com/globusgenomics/genomics-footprint.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use experimental models.

METHOD DETAILS

Overview
We created and executed footprinting workflows using various tools and services built and operated as a part of the NIH Big Data to

Knowledge (BD2K) Big Data for Discovery Science (BDDS) center (http://bd2k.ini.usc.edu). At a high level, these tools enabled au-

thoring and orchestration of complex and multi-tool workflows, transparent and elastic scaling on cloud resources, reproducible

analysis based on provenance captured using minids and Big Data Bags (BDBags) (detailed below). The scalable workflows were

built using the cloud-based Globus Genomics service (Madduri et al., 2014). These workflows include data retrieval from ENCODE

using our ENCODE2Bag service that creates a portable data unit that encapsulates the entire results of an ENCODE query at a spe-

cific point in time. The resulting BDBag is passed as input to various analysis workflows that are executed in parallel to identify DNA

footprints using cloud-based resources. The Globus Genomics platform, coupled with the BDDS tools, facilitates reproducibility of

complex analysis for large cohorts through well-defined and published workflows (Madduri et al., 2019).

BDBags, Minids
The input data from ENCODE consisted of all available DNase Hypersensitivity (DHS) datasets from 27 tissue types. ENCODE pro-

vides metadata for each tissue type which was exported and included in a BDBag (Chard et al., 2016, IEEE Big Data, conference

presentation). BDBag is a format for defining a dataset and its contents by enumerating the data elements, regardless of their loca-

tion, and for associating metadata. BDBags can be passed between services and materialized (by downloading data elements) only

when needed. All datasets used in the workflow are identified using minids—a lightweight identifier for uniquely identifying a dataset.

Minid and BDBag tools provide mechanisms for exchanging datasets by name, without regard for location or size, and with assur-

ance that the data have not been modified.

ENCODE2Bag Service and Globus Genomics
The ENCODE2Bag service provides a simple web interface for exporting identified, verifiable collections of data from ENCODE. The

service when given an ENCODE query, dynamically creates a BDBag that is stored on Amazon S3, and identified with a minid. The

BDBag does not contain the large genomics files, but rather includes a manifest file which enumerates the files with their location(s)

and checksum(s) for verifying integrity when accessed. The summary of the ENCODE query, represented as a Tab Separated Value

file, is included in the BDBag asmetadata to track and record provenance. Thus, given aBDBag, a usermay, at any point in the future,

obtain the results of that ENCODE query executed at the original time—an important property for reproducibility. BDBag tools ab-

stracts the process by which a BDBag is ‘‘materialized.’’

Globus Genomics is a cloud-hosted web service that enables rapid analysis of large genomics data. The service has over 3000

computationally optimized tools and a collection of best practices analysis workflows. Additionally, we added the data management

tools built as part of the BDDS BD2K center to the service to make it easier for researchers to build high performance, reproducible

bioinformatics workflows.

Globus provides reliable, secure, and high performance data transfer between Globus ‘‘endpoints’’ (Chard et al., 2014). Globus pro-

vides a common interface to a variety of storage systems ranging from local POSIX file systems, through to cloud object stores (e.g.,

AmazonS3), high performance file systems, and even archival tape storage.Globus is able to orchestrate data transfer between any two

systems by managing authentication with both endpoints, optimizing transfer configurations for transfer rate, recovering from errors,

and notifying users of transfer status. We used Globus file transfer functionality to move large amounts of data from repositories, insti-

tutional storage systems, and local computers to the high performance, cloud-hosted compute resources used by the workflow.

The analysis workflows require only theminid of the input dataset to perform the analysis. TheGlobusGenomics service usesminid

tools to transparently resolve the location of the BDBag, it then uses the BDBag tools to identify the contents of the dataset, and finally

uses Globus to transfer the raw files to the cloud-hosted analysis infrastructure.

Scalable workflow for predicting Transcription Factor Binding Sites
In this workflow, we used the above-mentioned tools to materialize the BDBag for each tissue. Each tissue type contained DHS data

for multiple samples. In addition, each sample had a variable number of replicate sequence data. Footprints were generated for the

same input data using two alignment seed-lengths of 16 and 20 units, respectively. The analysis of the data consisted of aligning each

replicate sample using the SNAP-aligner (Zaharia et al., 2011). Once the alignment BAM files were produced for each replicate, they

were merged using Samtools (Li et al., 2009). The merged BAM file was used to generate regions of open chromatin using F-Seq
Cell Reports 32, 108029, August 18, 2020 e4
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(Boyle et al., 2011) based on the recommended parameters by Koohy et al. (2014), with the minimum reported size reduced from 500

bases to 400.Wellington was runwith the -fdrlimit set to�1, to be themost lenient in reporting. HINTwas run using standard settings.

Neither Wellington nor HINT were run using any cleavage bias correction (Gusmao et al., 2014; Piper et al., 2013). The footprints were

then stored in a relational database for ease of query.

Thesizeof the inputdata (2.5TB) andvariability in replicatequantity for all samples (1591FASTQsamples)made for acomplexanalysis

(Figure 1). TheGlobusGenomicsplatformallowed us to automate this analysis through its support for transparent batch submission and

parallelization methods.We utilized Amazon EC2 r3.8xlarge instance type with 32 CPUs and 244 gigabytememory per node. The anal-

ysis of all tissues generated over 5 TB of data while using approximately 68,771 CPU hours (2149.1 node hours). The analysis of each

tissuewas executed in parallel. In addition, eachpatient and their replicateswere executed in parallel, aswell as each footprint algorithm

Alignment
For each tissue type, we started with the FASTQ files from the ENCODE portal (encodeproject.org). Some ENCODE experiments

contain multiple biological samples, while others may contain only a single sample. An ENCODE experiment may contain single

or paired-end reads, with varying depth of sequencing and varying read length in each experiment.

The ENCODE data was generated using short reads (< 50 bases), resulting in a high number of potential sequencematches. This led

us to produce alignments based on two different hash table seed lengths. Each FASTQ file (or paired-end files) was aligned to GRCh38

using the SNAPalgorithm (Zaharia et al., 2011). SNAP uses a default seed length of 20.We additionally aligned to seed size 16, given the

shorter sequence lengths. Using the experiment groupings from ENCODE, we produced 386 BAM files for each seed.

Identifying regions of open chromatin
Based onwork fromKoohy et al. (2014), who compared four different approaches (F-Seq, Hotspot,MACS and ZINBA) we used F-seq

(Boyle et al., 2008) to identify regions of open chromatin from the aligned BAM files using the same recommended parameters. As

stated in the F-Seq documentation, the results are non-deterministic because it uses a variable seed number in selecting a starting

point for determining regions of open chromatin. The seed sets the sliding frame at which regions are considered, leading to slightly

different beginning and ending points of open-chromatin. The resulting regions (in BED format) vary slightly when repeated. The var-

iable coverage on the edges becomes less of an issue with increased sample numbers.

Motif database curation
As footprints from HINT and Wellington are motif agnostic and do not include information on motif matches, we integrated the foot-

print locations with motifs and motif-transcription factor mappings from JASPAR, HOCOMOCO, UniPROBE, and SwissRegulon.

There is considerable redundancy between these databases, which often contain position weight matrices that are similar or iden-

tical. A motif in one database can also be quite different from the motif in another database associated with the same transcription

factor, resulting in different mappings. To avoid inclusion of redundant motifs, we updated and modified an existing R package, Mo-

tifDB (Shannon and Richards, 2017), to include the latest versions of all four databases. We evaluated the similarity of all motifs using

Tomtom (Gupta et al., 2007). Thosemotifs that were significantly different from the 2016 release of JASPAR (-log(p value)R 7.3) were

retained, yielding a total of 1,530 motifs. In addition to the mappings provided by each of the aforementioned databases, we also

expanded the TF-motif mappings to incorporate families of TFs with very similar DNA sequence specificity, using information

from TFClass (Wingender et al., 2015). The complete mapping can be accessed throughMotifDB by calling the ‘‘associateTranscrip-

tionFactors’’ method. The number of original motifs considered for each database and the number of motifs and transcription factor

mappings retained after filtering are found in Table S1.

Collectively, our aggregated collection of motif databases and mappings contains 1,530 unique motifs recognized by 1,515 tran-

scription factors. Many motifs were associated with a single transcription factor, while a few promiscuous motifs were associated

with as many as 60 transcription factors. Two representative examples of these mappings are found in Figure S2. An entire map

of all motifs and TFs can be found in the Table S2. Reversing the association, many transcription factors were associated with

one motif, while a few transcription factors were associated with > 100 motifs. The total number of motif-transcription factor map-

pings considered was 13,242.

Combining footprints with database of motifs
To maximize coverage, and because of the potential imprecise nature of footprints, if any part of a known motif overlapped with a

single base of the footprint, an entry was created. Intersection was done by porting the motif instances and footprints into the Ge-

nomicRanges R package, using the ‘‘any’’ option.

ChIP-seq validation and machine learning models
We joined all footprints based upon location in the genome to create one unified dataset per tissue. To account for the fact that the

same footprints are often found in multiple samples from the same tissue, we retained the best score for each method and added as

an additional metric the number of times a footprint was found at that location. As HINT is far more sensitive than Wellington, we

scaled this count metric to one that captured the fraction of samples in which a given footprint was found. After we summed the num-

ber of footprints for each location, we used the highest number of occurrences as the denominator for all footprints in that method,
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resulting in a fractional representation for the occurrence metric. Additionally, we recognized that footprint-motif intersections

include overlap of any size, but regions with higher overlap might indicate higher-confidence cases. To capture this effect, we calcu-

lated the overlap distance between each motif and its footprints for both seed as a fraction of motif length. JASPAR transcription

factor class information was one-hot encoded in our feature matrix. GC content was calculated for eachmotif found within a footprint

by using a window of 100 bases from the center on each side of themotif. Distance in base pairs (BP) to the nearest transcription start

site (TSS) was calculated for each motif and transformed using the arcsinh (hyperbolic arcsine) function.

For purposes of validating the model, we designated chromosomes 2 and 4 as a hold-out set that was left untouched until the very

end after all model parameter sets had been tested. Chromosomes 1, 3, and 5were used to test themodels as different parameters in

architectures were explored. The remaining chromosomes were used to train the models. We trained two classes of models: 1) a

basic logistic regression model, and 2) a gradient boosted model, which aggregates an ensemble of decision trees to learn a

nonlinear decision boundary. Regression models were constructed for their ease of interpretability, as well as for a baseline to which

we compare the performance of the boosted models. We trained logistic regression models not only for all features in the ensemble,

but on each feature individually, in order to get an idea of which features were most predictive of ChIP-seq hits. The boosted model

was chosen based on its predictive power, as gradient boosted trees have been shown to offer state of the art performance for tasks

of this nature (Olson et al., 2018). We used the R package XGBoost to create this model using amaximum tree depth of 7, 200 rounds

of boosting, and a logistic regression optimization criterion (Chen and Guestrin, 2016).

One challenge that we encountered in creating this model is that the number of footprints for a given motif (or set of motifs

connected to a given transcription factor) is orders of magnitude larger than the number of ChIP-seq peaks. This imbalance is prob-

lematic in the setting of this machine-learning format, as it increases memory requirements significantly and results in a poor signal-

to-noise ratio. In order to address this issue in our training set, we sampled 20million hits of 264motifs, combined thesemotif hits with

our lymphoblast footprints, then filtered for a 10:1 ratio of negative-to-positives. We did not filter any of the ChIP-seq hits in our

training set. This resulted in a more balanced training set in which the features associated with true positives could be better learned.

We also used a statistical measure of performance, the Matthews Correlation Coefficient (MCC), that was designed to be robust to

unbalanced sample sizes in the two classes being compared (Boughorbel et al., 2017).

eQTL Enrichment
Expression quantitative trait loci (eQTLs) from the Genotype Tissue Expression Consortium (GTEx; V6p 95% credible causal sets) (Bat-

tle et al., 2017) were downloaded from the UCSC Genome Browser (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database) on

January 5, 2018. In addition, as a background set, we downloaded the table of all 11,959,406 genotyped and imputed variants from the

GTEx V6p dataset (‘‘GTEx_Analysis_2015-01-12_OMNI_2.5M_5M_450Indiv_chr1-22-X_genot_imput_info04_maf01_HWEp1E6_

variant_id_lookup.txt.gz’’) from the GTEx web portal (https://www.gtexportal.org/home/; accessed March 16, 2018). GTEx variants

were converted to hg38 coordinates using the UCSC Genome Browser’s liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver)

with default parameters. We identified TF binding site-altering variants by intersecting the locations of GTEx variants with the locations

of TF binding sites from DNase-seq footprinting, using the genomic coordinates of motifs that overlap a footprint with a HINT score > =

200. Statistical associations between footprints and eQTL posterior probabilities were calculated using the t.test() function in R. Statis-

tical significance for overlap between variants that alter TF binding sites and variants that are eQTLs was calculated from 1,000 re-sam-

pling permutations, drawing variants at random from the complete set of genetic variants in GTEx V6p.

Partitioned Heritability Analysis
We utilized a partitioned heritability approach to characterize the relationship between footprint confidence scores and relevant phe-

notypes. First, we divided all the pooled footprints in a given tissue type into decile bins based on the score assigned to the best

HINT20 score (1 = lowest scores, 10 = highest scores). We then used portioned LD Score Regression (LDSC) (Finucane et al.,

2015) to assess each decile’s contribution to heritability for several disease traits. The immune traits assessed were ulcerative colitis,

type 1 diabetes, rheumatoid arthritis, primary biliary cirrhosis, multiple sclerosis, lupus, Crohn’s disease, and celiac disease. The

neuropsychiatric traits included educational attainment, neuroticism, schizophrenia, and bipolar disorder, as well as 23 additional

brain-related traits taken from the top 100 most heritable traits in the UK Biobank (Table S3) (Bentham et al., 2015; Bradfield

et al., 2011; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; Cordell et al., 2015; Dubois et al.,

2010; Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011; Jostins et al., 2012; Okada et al., 2014; Okbay et al.,

2016; Sawcer et al., 2011). The top and bottom brain deciles were compared using a chi-square test, and we used the residuals

to determine over- and under-represented TFs in both deciles.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNase-I genomic footprints were identified with HINT andWellington. Thresholds for selecting high-quality footprints were evaluated

via a gradient boosting model, comparing footprint locations to true-positive TF binding sites from ChIP-seq. Overlap of footprints

with eQTLs was evaluated with bootstrap permutations and t tests. Enrichment of footprints for SNPs associated with risk for human

traits was calculated with stratified LD score regression. Details are provided in the Method Details section, above.
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